Air Dispersion Modeling Analysis
For Verifying Compliance of Allowable Emissions
with the One-Hour SO₂ and NO₂ NAAQS:
UNC Manning and Cogeneration Power Plants

Prepared by:
Lindsey Meyers

October 24, 2018
# TABLE OF CONTENTS

1. Introduction ..............................................................................................................3  
2. Modeling Methodology ..........................................................................................3  
   2.1 Air Dispersion Model ..................................................................................4  
   2.2 AERMOD Input Control Options ...............................................................4  
   2.3 Output Options ............................................................................................4  
   2.4 NO\textsubscript{2} Modeling Methodology ..................................................5  
3. Model inputs ............................................................................................................5  
   3.1 Geographical Inputs ....................................................................................5  
   3.2 Emission Rates and Source Parameters .......................................................6  
   3.3 Building Dimensions for Downwash ...........................................................8  
   3.4 Receptors ......................................................................................................8  
   3.5 Meteorological Data .....................................................................................8  
4. Background Air Concentrations ..............................................................................9  
5. Modeling Results .....................................................................................................9  
   5.1 Sulfur Dioxide ..............................................................................................9  
   5.2 Nitrogen Dioxide ..........................................................................................13  
6. Conclusion .............................................................................................................16  

# FIGURES

1. UNC Manning/Cogeneration: Allowable SO\textsubscript{2} Concentrations, Boilers 6-10 and 2 Generators, Modeled with 2013-2017 met data  
2. UNC Manning: Allowable SO\textsubscript{2} Concentrations, Boilers 6 and 7, Modeled with 2013-2017 met data  
3. UNC Manning/Cogeneration: Allowable NO\textsubscript{2} Concentrations, Boilers 6-10 and 2 Generators, Modeled with 2013-2017 met data and PVMRM with a 0.2 NO\textsubscript{2}/NO\textsubscript{x} in-stack ratio  
4. UNC Manning/Cogeneration: Allowable NO\textsubscript{2} Concentrations, Boilers 6-10 and 2 Generators, Modeled with 2013-2017 met data and PVMRM with a 0.5 NO\textsubscript{2}/NO\textsubscript{x} in-stack ratio  

# ATTACHMENTS

1. Curriculum Vitae
1. **Introduction**

The University of North Carolina at Chapel Hill (UNC) owns and operates two power plants: one on Manning Drive (Manning) adjacent to the UNC Hospital, and the Cogeneration facility (Cogeneration) on Cameron Avenue just off of the main campus. These plants have various emission sources including coal, natural gas, wood, and distillate oil-fired boilers and generators. UNC currently is in the process of applying for a Title V permit renewal.

In response to the Title V permit renewal application, I was asked by the Center for Biological Diversity to verify whether UNC’s current allowable SO$_2$ and NO$_x$ emissions would cause air impacts that exceed the one-hour National Ambient Air Quality Standard (NAAQS) for these pollutants. I prepared air dispersion modeling analyses for calculating potential ambient SO$_2$ and Tier 3 NO$_2$ air concentrations for allowable emissions from the UNC facilities. These modeled impacts are then compared with the one-hour SO$_2$ and NO$_2$ NAAQS, respectively. My modeling methods and results will be discussed in further detail in the following report. My modeling files can be found at this link.

I have broad experience as a consultant. I hold an M.A. (2012) degree in Geography from California State University, Northridge, where I specialized in GIS and air dispersion modeling. I have performed numerous air quality modeling analyses using AERMOD and other air dispersion models, prepared meteorological data using AERMET, performed health risk assessments, and created many detailed maps and graphics. I have experience preparing analyses of various emission types from many sources and facilities including natural gas and coal-fired power plants, agricultural fields, and mobile sources. My curriculum vitae can be found as Attachment 1.

2. **Modeling Methodology**

The 2010 one-hour SO$_2$ NAAQS takes the form of a three-year average of the 99$^{th}$-percentile of the annual distribution of daily maximum one-hour concentrations, which cannot exceed 75 ppb.$^1$ This standard is to be verified using USEPA’s AERMOD air dispersion model, which produces air concentrations in units of µg/m$^3$. The one-hour SO$_2$ NAAQS of 75 ppb equals 196.2 µg/m$^3$, and this is the value I used for determining whether modeled UNC Manning and Cogeneration impacts exceed the NAAQS. The 99$^{th}$-percentile of the annual distribution of daily maximum one-hour concentrations corresponds to the fourth-highest value at each receptor for a given year.

The 2010 one-hour NO$_2$ NAAQS takes the form of a three-year average of the 98$^{th}$-percentile of the

---

annual distribution of daily maximum one-hour concentrations, which cannot exceed 100 ppb.\(^2\) The one-hour NO\(_2\) NAAQS of 100 ppb equals 188 µg/m\(^3\). The 98\(^{th}\)-percentile of the annual distribution of daily maximum one-hour concentrations corresponds to the eighth-highest value at each receptor for a given year.

This section describes the dispersion model, control options, and output options I used for verifying UNC’s compliance with the one-hour SO\(_2\) and NO\(_2\) NAAQS.

### 2.1 Air Dispersion Model

I performed one-hour SO\(_2\) and NO\(_2\) NAAQS modeling with USEPA’s AERMOD program, version 18081, obtained from the Support Center for Regulatory Atmospheric Modeling (SCRAM) website. AERMOD is the USEPA preferred air dispersion model for determining air impacts within 50 kilometers of air pollution emission sources.\(^3\) Version 18081 is the latest version of the AERMOD model.

### 2.2 AERMOD Input Control Options

I ran AERMOD with the following control options:

- One-hour average air concentrations
- Regulatory defaults for SO\(_2\)
- PVMRM for NO\(_2\)
- Rural dispersion coefficients

These input control options are consistent with previous modeling analyses provided by the North Carolina Division of Air Quality (NCDAQ). They are appropriate input options for one-hour SO\(_2\) and NO\(_2\) NAAQS modeling in the area surround UNC according to USEPA’s methodology outlined in Section 7.2.3 of the Guideline on Air Quality Models.\(^4\)

### 2.3 Output Options

My AERMOD modeling analyses of the UNC facilities includes five years of meteorological data –

---

\(^2\) USEPA, Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO\(_2\) National Ambient Air Quality Standard, March 1, 2011.

\(^3\) USEPA, Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions, Appendix W to 40 CFR Part 51, November 9, 2005.

\(^4\) Id., Section 7.2.3.
years 2013 through 2017. Meteorological data will be discussed further in section 3.5.

I generated tables, plot files, and summary files appropriate for 1-hour SO\textsubscript{2} and NO\textsubscript{2} NAAQS modeling.

2.4 NO\textsubscript{2} Modeling Methodology

NO\textsubscript{2} NAAQS modeling involves a three-tiered approach, as described by USEPA\textsuperscript{5}:

"Tier 1 – assume full conversion of NO to NO\textsubscript{2}, where total NO\textsubscript{x} concentrations are computed with a refined modeling technique specified in Section 4.2.2 of Appendix W.

Tier 2 – multiply Tier 1 results by empirically derived NO\textsubscript{2}/NO\textsubscript{x} ratios, with 0.75 as the national default ratio for annual NO\textsubscript{2} (Chu and Meyer, 1991) and 0.80 as the national default ratio for hourly NO\textsubscript{2} (Want, et al, 2011; Janssen, et al, 1991), as recommended in U.S. EPA, 2011.

Tier 3 – detailed screening methods may be used on a case-by-cases basis. At this time, OLM (Cole and Summerhays, 1979) and the PVMRM (Hanrahan, 1999) are considered to be appropriate as detailed screening techniques."

In this modeling analysis, I used the Tier 3 Plume Volume Molar Ratio Method (PVMRM), consistent with previous modeling analyses provided NCDAQ.

3. Model inputs

The AERMOD air dispersion model requires a lengthy list of input values. Key inputs to this dispersion model include local geography, air emission rates of the released pollutant, source parameters (how and where the material is released to the air), receptors (locations where the offsite concentrations are calculated), and meteorological data (determines how and where the material is dispersed in the air). Each of these inputs is discussed below.

3.1 Geographical Inputs

The “ground floor” of all air dispersion modeling analyses is establishing a coordinate system for identifying the geographical location of emission sources and receptors. These geographical locations are used to determine local characteristics (such as land use and elevation), and also to ascertain source to receptor distances and relationships.

\textsuperscript{5} USEPA, Memorandum: Applicability of Appendix W Modeling Guidance for the 1-hour NO\textsubscript{2} National Ambient Air Quality Standard, June 28, 2010, pp. 1-2
I used the Universal Transverse Mercator (UTM) NAD83 zone 17 coordinate system for identifying the easting (x) and northing (y) coordinates of the modeled sources and receptors. I obtained the source locations from previous modeling files provided by NCDAQ. I verified the source coordinates using Google Earth Pro orthoimagery, which ensures consistency with the UTM NAD83 coordinate system.

3.2 Emission Rates and Source Parameters

My modeling analyses are limited to SO$_2$ and NO$_x$ allowable emissions for UNC’s Cogeneration and Manning facilities, as discussed in the Introduction.

I modeled two scenarios for SO$_2$. For the first SO$_2$ scenario, I modeled allowable emissions for boilers #6, #7, and #8 at Cogeneration, boilers #9 and #10 at Manning, and two non-emergency generators located at Cogeneration. For the second SO$_2$ scenario, I modeled allowable emissions for only boilers #6 and #7 at Cogeneration.

I also modeled two scenarios for NO$_2$. For both scenarios, I modeled allowable emissions for boilers #6, #7, and #8 at Cogeneration, boilers #9 and #10 at Manning, and two non-emergency generators located at Cogeneration. In one modeling scenario, I modeled with Tier 3 PVMRM and a 0.2 in-stack ratio, consistent with previous modeling provided by NCDAQ. For the second modeling scenario, I modeled with Tier 3 PVMRM and a 0.5 in-stack ratio, which is the default value recommended by USEPA.\(^6\)

The allowable emissions I modeled are as follows:\(^7\):

Boiler #6 and #7 (B67S: common stack)
SO$_2$: 323.17 MMBTU/hr * 2.3 lb/MMBTU = 743.3 lb/hr each  
NO$_x$: 323.17 MMBTU/hr * 0.6 lb/MMBTU = 193.9 lb/hr each

Boiler #8 (STK4)
SO$_2$: 338 MMBTU/hr * 2.3 lb/MMBTU = 777.4 lb/hr  
NO$_x$: 338 MMBTU/hr * 0.2 lb/MMBTU = 67.6 lb/hr

---

\(^6\) USEPA, Memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO$_2$ National Ambient Air Quality Standard, March 01, 2011, p. 7

\(^7\) NCDAQ, Title V Air Quality Permit No. 03069T34, June 16, 2016
Boiler #9 and #10 (MANNING: common stack)
SO\(_2\): 249 MMBTU/hr * 2.3 lb/MMBTU = 572.7 lb/hr each
NO\(_x\): 249 MMBTU/hr * 0.2 lb/MMBTU = 49.8 lb/hr each

Two Non-Emergency Generators (GEN1 and GEN2)
SO\(_2\): 6.826 MMBTU/hr * 2.3 lb/MMBTU = 15.7 lb/hr each
NO\(_x\): 40.56 lb/hr each

These sources are treated as point sources in AERMOD. Point sources are modeled with the following stack parameters:

- Source Location X (Easting) coordinate (UTM NAD83);
- Source Location Y (Northing) coordinate (UTM NAD83);
- Source base elevation (meters above sea level);
- Stack emission rate (g/s);
- Stack height (meters);
- Stack gas exit temperature (Kelvin);
- Stack gas exit velocity (meters/second);
- Stack diameter (meters).

I obtained stack release parameters from modeling files provided by NCDAQ. I modeled the following allowable emissions and stack parameters:

<table>
<thead>
<tr>
<th>Source ID</th>
<th>XUTM (meters)</th>
<th>YUTM (meters)</th>
<th>Base Elevation (meters)</th>
<th>SO(_2) Emission Rate (g/s)</th>
<th>NO(_x) Emission Rate (g/s)</th>
<th>Release Ht. (meters)</th>
<th>Stack Temp. (K)</th>
<th>Stack Exit Vel. (m/s)</th>
<th>Stack Diam. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B67S</td>
<td>674918.6</td>
<td>3975245.2</td>
<td>139.55</td>
<td>187.31</td>
<td>48.86</td>
<td>67.06</td>
<td>463.71</td>
<td>21.91</td>
<td>2.74</td>
</tr>
<tr>
<td>STK4</td>
<td>674859.6</td>
<td>3975318.2</td>
<td>145.03</td>
<td>97.95</td>
<td>8.52</td>
<td>63.40</td>
<td>444.26</td>
<td>18.10</td>
<td>1.83</td>
</tr>
<tr>
<td>MANNING</td>
<td>676113.1</td>
<td>3974838.4</td>
<td>137.16</td>
<td>144.32</td>
<td>12.55</td>
<td>35.05</td>
<td>441.48</td>
<td>13.41</td>
<td>2.74</td>
</tr>
<tr>
<td>GEN1</td>
<td>674867.0</td>
<td>3975319.0</td>
<td>144.46</td>
<td>1.98</td>
<td>5.11</td>
<td>14.94</td>
<td>749.81</td>
<td>36.81</td>
<td>0.51</td>
</tr>
<tr>
<td>GEN 2</td>
<td>674849.4</td>
<td>3975315.5</td>
<td>144.04</td>
<td>1.98</td>
<td>5.11</td>
<td>14.94</td>
<td>749.81</td>
<td>36.81</td>
<td>0.51</td>
</tr>
</tbody>
</table>

---

3.3 Building Dimensions for Downwash

Adjacent buildings and other structures may cause plume downwash, a condition where plumes can be dispersed towards the ground in the downwind wake-effect from these buildings. USEPA’s Building Profile Input Program (BPIPPRM v. 04274 with Plume Rise Model Enhancement (PRIME)) is used to determine stack-specific good engineering practice (GEP) values and wind direction-specific building downwash parameters for each 10-degree azimuth.9

Modeling files provided by NCDAQ for the UNC’s Cogeneration and Manning facilities included building downwash input parameters. I used these same building downwash input parameters in my modeling analysis.

3.4 Receptors

The receptor grid used in the modeling provided by NCDAQ did not include some receptors within the UNC campus that are in areas with ambient air. For my modeling analysis, I used this same receptor grid but filled in the missing receptors. The 5,415 receptors cover a grid of approximately 6.7 km by 6.2 km, with the UNC campus roughly in the middle. There are receptors spaced every 20-25 m along the campus boundary. Receptors within the campus boundary are spaced every 50 m, while receptors outside of the campus boundary are spaced every 100 m.

Modeled receptor locations require terrain elevation data, in meters above sea level. I obtained terrain elevation data for these locations using National Elevation Dataset (NED) GeoTiff data for the area encompassing the UNC facilities and the modeled receptors. GeoTiff is a binary file that includes data descriptors and geo-referencing information necessary for extracting terrain elevations. I extracted terrain elevations from the NED files using USEPA’s AERMAP program with 1/3rd arc-second (10 meter horizontal) resolution.

3.5 Meteorological Data

USEPA’s definition of preferred meteorological data includes the most recent five years of National Weather Service (NWS) data.10 Currently, this condition is satisfied using 2013 through 2017 Automated Surface Observing Station (ASOS) data collected at the most site-appropriate airport. For use in my modeling analysis, I obtained pre-processed 2013-2017 meteorological data from the North Carolina Department of Environmental Quality with Chapel Hill surface data and

---

10 USEPA, Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions, Appendix W to 40 CFR Part 51, November 9, 2005.
4. Background Air Concentrations

I did not add background air concentrations to the modeled results. Therefore, the modeling results do not include impacts from other nearby SO$_2$ and NO$_2$ NAAQS-consuming sources, nor do they include regional background levels. Accordingly, these modeled impacts are likely under-estimating actual total air concentrations. Moreover, the modeled impacts presented below are caused solely by UNC’s SO$_2$ and NO$_x$ emissions.

5. Modeling Results

As discussed above, I modeled allowable emissions for both SO$_2$ and NO$_x$ with two scenarios each.

5.1 SO$_2$ Modeling Results

The 99th percentile modeled one-hour SO$_2$ ambient air impacts from UNC’s allowable emissions are presented in the table below. Concentrations are for surface-based receptors and are in the form of the NAAQS. Both scenarios result in NAAQS exceedances.

For this analysis, the one-hour SO$_2$ ambient air impacts (Facility H4H – highest fourth high value) are based on the 99th percentile of the annual distribution of daily maximum one-hour concentrations averaged across the five years of modeled meteorological data. The peak modeled one-hour SO$_2$ ambient air impacts, using 2013 through 2017 meteorological data and no background SO$_2$ concentrations, are as follows:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>UTM X (m)</th>
<th>UTM Y (m)</th>
<th>Facility H4H Conc. (µg/m$^3$)</th>
<th>NAAQS (µg/m$^3$)</th>
<th>NAAQS exceedance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Emissions: Boilers #6-10 and Two Non-Emergency Generators</td>
<td>675733</td>
<td>3974494</td>
<td>1170.96</td>
<td>196.2</td>
<td>YES</td>
</tr>
<tr>
<td>Allowable Emissions: Boilers #6 and #7 only</td>
<td>675783</td>
<td>3974994</td>
<td>758.02</td>
<td>196.2</td>
<td>YES</td>
</tr>
</tbody>
</table>

No background concentrations were added to modeling results

The modeled impacts can also be shown graphically. Figures 1 and 2 are maps showing isopleths (lines of equal air concentration) overlaid onto ESRI street maps. I created the isopleths using
AERMOD output plotfiles and Golden Software’s Surfer, v. 10. I used kriging algorithms to grid the data for the isopleths. Figure 1 shows modeled one-hour SO$_2$ concentrations from allowable emissions from Boilers #6-10 and the two non-emergency generators. Figure 2 shows modeled one-hour SO$_2$ concentrations from allowable emissions from Boilers #6 and #7 only.

Figure 1:
Figure 2:

**UNC Cogeneration**

Allowable SO$_2$ Concentrations
Boilers 6 and 7
Modeled with 2013-2017 met data

[Map showing allowable SO$_2$ concentrations in Chapel Hill area.]
5.2 NO\textsubscript{2} Modeling Results

The 98\textsuperscript{th} percentile modeled one-hour NO\textsubscript{2} ambient air impacts from UNC’s allowable emissions are presented in the table below. Concentrations are for surface-based receptors and are in the form of the NAAQS. Both scenarios result in NAAQS exceedances.

For this analysis, the one-hour NO\textsubscript{2} ambient air impacts (Facility H8H – highest eighth high value) are based on the 98\textsuperscript{th} percentile of the annual distribution of daily maximum one-hour concentrations averaged across the five years of modeled meteorological data. The peak modeled Tier 3 (PVMRM) one-hour NO\textsubscript{2} ambient air impacts, using 2013 through 2017 meteorological data and no background NO\textsubscript{2} concentrations, are as follows:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>UTM X (m)</th>
<th>UTM Y (m)</th>
<th>Facility H8H Conc. (µg/m\textsuperscript{3})</th>
<th>NAAQS (µg/m\textsuperscript{3})</th>
<th>NAAQS exceedance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Emissions: Boilers #6-10 and Two Non-Emergency Generators,</td>
<td>675053</td>
<td>3975342</td>
<td>330.23</td>
<td>188</td>
<td>YES</td>
</tr>
<tr>
<td>with a 0.2 in-stack ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable Emissions: Boilers #6-10 and Two Non-Emergency Generators,</td>
<td>675053</td>
<td>3975342</td>
<td>763.75</td>
<td>188</td>
<td>YES</td>
</tr>
<tr>
<td>with a 0.5 in-stack ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No background concentrations were added to modeling results

The modeled impacts can also be shown graphically. Figures 3 and 4 are maps showing isopleths (lines of equal air concentration) overlaid onto ESRI street maps. I created the isopleths using AERMOD output plot files and Golden Software’s Surfer, v. 10. I used kriging algorithms to grid the data for the isopleths. Figure 3 shows modeled one-hour NO\textsubscript{2} concentrations from allowable emissions from Boilers #6-10 and the two non-emergency generators with a 0.2 in-stack ratio. Figure 4 shows modeled one-hour NO\textsubscript{2} concentrations from allowable emissions from Boilers #6-10 and the two non-emergency generators with a 0.5 in-stack ratio.
Figure 3:
Figure 4:

UNC Manning/Cogeneration
Allowable NO\textsubscript{2} Concentrations
Boilers 6-10 and 2 Generators
Modeled with 2013-2017 met data and PVMRM with a 0.5 NO\textsubscript{2}/NO\textsubscript{x} in-stack ratio

188 µg/m\textsuperscript{3} (NAAQS)
300 µg/m\textsuperscript{3}
400 µg/m\textsuperscript{3}

Basemap: ESRI streets
6.0 Conclusion

My modeling analysis reveals that the Title V allowable emissions for UNC’s Manning and Cogeneration facilities would result in exceedances of both the SO$_2$ and NO$_2$ NAAQS. I found SO$_2$ NAAQS exceedances even when only accounting for allowable emissions for Boilers #6 and #7. I found NO$_2$ NAAQS exceedances for allowable emissions when using Tier 3 PVMRM modeling methods with a 0.5 in-stack ratio as well as with a 0.2 in-stack ratio. These potential NAAQS exceedances occur in highly populated areas with residences, hospital facilities, and elevated terrain such as open-top parking lots within several hundred feet of UNC’s facilities. These conservative results also do not take ambient background levels or emissions from any nearby sources into account.

UNC’s Title V allowable emissions need to be reduced significantly to comply with the one-hour SO$_2$ and NO$_2$ NAAQS. For example, according to my modeling methods and results, allowable SO$_2$ emissions from Boilers #6 and #7 would need to be reduced from 2.3 lb/MMBTU to 0.59 lb/MMBTU in order to comply with the one-hour SO$_2$ NAAQS. This is the case when considering Boilers #6 and #7 only, and needs to be confirmed by further modeling that would include emissions from other nearby sources and ambient background SO$_2$ levels.
Attachment 1: Curriculum Vitae
Lindsey Meyers

6895 SW 169th Pl
Beaverton, OR 97007

(805) 798-4646
LindseyMeyers121@gmail.com

EDUCATION

California State University, Northridge
M.A. in Geography, with distinction
Emphasis in GIS

Thesis: “Diesel Trucks: Health Risk and Environmental Equity”

- I used USEPA’s AERMOD model to determine concentrations of diesel particulate matter (DPM) around several Southern California freeways, focusing on pollution from port-related diesel truck traffic. I also performed population analyses, examining inequities related to race and income groups exposed to DPM.

California State University, Northridge
B.M. in Oboe Performance, cum laude

SOFTWARE SKILLS

Microsoft Office
Adobe Creative Suite
AERMOD
ArcGIS
Golden Software Surfer
Google Earth Pro
ERDAS Imagine
SPSS

EXPERIENCE

Consultant

- Providing GIS analyses including creating, gathering, integrating, and interpreting spatial data
- Air Quality modeling using dispersion models such as USEPA’s AERMOD
- Designing maps and graphics

Publications:

Past projects include:

- Geocoded, mapped, and performed a distance analysis of plaintiff locations in Missouri
- Modeled and mapped NO\textsubscript{2} concentrations for a proposed power plant in Santa Paula, CA
- Modeled and mapped mercury deposition rates around an alumina manufacturing facility in Louisiana
- Performed a GIS population analysis of the Beaverton and Portland, OR areas for the Beaverton Symphony Orchestra marketing team
- Modeled and mapped NO\textsubscript{2} concentrations for a proposed power plant in Oxnard, CA
- Prepared modeling files and modeled unpaved road sources at a Pacific Northwest coal terminal using AERMOD
- Modeled and mapped pesticide drift adjacent to schools and neighborhoods in Oxnard, CA
- Prepared detailed source locations for paved and unpaved roads at a facility in Alabama for analysis in AERMOD
- Prepared CONTAM project files for indoor air quality modeling analyses
- Mapped soil concentrations of hexavalent chromium using high-resolution orthoimagery for a site in New Jersey
- Calculated health risk for a proposed fueling station in Sacramento, CA
- Mapped hexavalent chromium in Newport Beach using high-resolution orthoimagery
- Modeled and mapped actual SO\textsubscript{2} concentrations around two power plants (both combined and separately) in Ohio
- Modeled and mapped SO\textsubscript{2} concentrations around Hunter Station Power Plant (Castle Dale, UT)
- Modeled and mapped SO\textsubscript{2} concentrations around Seward Power Station (Seward, PA)
- Georeferenced, digitized, and analyzed historic California vegetation maps for publication
- Modeled and mapped SO\textsubscript{2} concentrations around OG&E Muskogee Power Plant (Muskogee, OK)
- Modeled and mapped SO\textsubscript{2} concentrations around OG&E Sooner Power Plant (Red Rock, OK)
- Mapped Thorium and Uranium soil deposition around Coldwater Creek in Missouri
- Prepared maps and population analysis for the AEP Rockport
Facility in Indiana

- Mapped SO\textsubscript{2} concentrations for the Potomac River Generating Station (Alexandria, VA)
- Prepared MET data to be used in AERMOD for Baton Rouge, LA
- Modeled and mapped PM\textsubscript{10} concentrations in Waimea, Kauai County, HI
- Modeled and mapped SO\textsubscript{2} and NO\textsubscript{2} concentrations around Colstrip Power Plant
- Analyzed land cover/population and prepared MET data to be used in AERMOD for Colorado Springs, CO
- Prepared maps showing SO\textsubscript{2} concentrations around the E.D. Edwards and Wood River power plants in IL
- Analyzed land cover/population density and mapped SO\textsubscript{2} concentrations around several Michigan power plants including MSU, J.R. Whiting, and St. Clair/Belle River
- Prepared maps of natural gas pipelines in North Dakota and Berkeley, CA
- Mapped SO\textsubscript{2} concentrations around the Homer City, PA power plant
- Mapped SO\textsubscript{2} and PM\textsubscript{2.5} concentrations around the proposed Taylorville Energy Center facility in IL
- Mapped SO\textsubscript{2} concentrations around Ashtabula, Avon Lake, and Lakeshore power plants in OH
- Mapped SO\textsubscript{2} concentrations around six Illinois Midwest Generation coal plants including detailed maps of Crawford and Fisk
- Mapped pesticide exposure in Oahu, HI
- Geocoded addresses and created Google Earth layers representing residents in Kauai County, HI