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Purpose of review

We remain far from achieving the goal of eliminating lead-associated

neurodevelopmental morbidities in children. New evidence regarding the blood lead

levels at which morbidities occur have led to calls for the Centers for Disease Contro

and Prevention to reduce the current screening guideline of 10 mg/dl. The review

evaluates the basis for these calls.

Recent findings

Adverse outcomes, such as reduced intelligence quotient and academic deficits,

occur at levels below 10 mg/dl. Some studies suggest that the rate of decline in

performance is greater at levels below 10 mg/dl than above 10 mg/dl, although a

plausible mechanism has not been identified. Increased exposure is also associated

with neuropsychiatric disorders such as attention deficit hyperactivity disorder and

antisocial behavior. Functional imaging studies are beginning to provide insight into the

neural substrate of lead’s neurodevelopmental effects. Current protocols for chelation

therapy appear ineffective in preventing such effects, although environmental

enrichment might do so.

Summary

No level of lead exposure appears to be ‘safe’ and even the current ‘low’ levels of

exposure in children are associated with neurodevelopmental deficits. Primary

prevention of exposure provides the best hope of mitigating the impact of this

preventable disease.
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Introduction
The optimism of the 1990s that the ‘lead problem’ had

been solved turned out to be premature and, like the rumor

of Mark Twain’s death, greatly exaggerated. Despite

remarkable successes in recent decades in abating key

sources and pathways of exposure, lead remains the

most important pediatric environmental health problem,

contributing significantly to the burden of childhood dis-

ease in both developed [1] and developing countries [2].

The costs associated with lead-associated morbidities are

estimated to be in the billions of dollars [3,4]. Deaths from

lead intoxication, although rare, still occur [5]. From a

public health standpoint, a major concern is a possible

‘silent pandemic’ [6��] of neurodevelopmental disorders

resulting from children’s continuing exposure to low levels

of lead.

The current review highlights recent developments in

the epidemiology of lead exposure, the blood lead levels

associated with various neurodevelopmental toxicities,

possible mechanisms of neurotoxicity and the role of

chelation therapy in preventing adverse sequelae.
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Epidemiology
In the late 1970s, the median blood lead level in US

preschool children was 15 mg/dl and 88% of children had a

level greater than 10 mg/dl [7], the current Centers for

Disease Control and Prevention (CDC) screening guide-

line [8]. Regulatory initiatives limiting the lead content of

paint and the use of tetraethyl lead as a gasoline additive

were remarkably successful in reducing the prevalence of

elevated blood lead levels in children. Based on data

from the National Health and Nutrition Examination

Survey (NHANES) 1999–2002, the mean has declined

to 1.9 mg/dl [9]. The percentage of children with a level

above 10 mg/dl is now 1.7%, although this still represents

approximately 300 000 children. The magnitude of racial

and socioeconomic disparities has also declined, but

levels above 10 mg/dl remain much more common among

minority children, children in low-income families and

children living in older homes.

Lead has been described as a ‘multimedia pollutant’ due

to the numerous and diverse sources and pathways of

potential exposure. Globalization has contributed to the
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problem. Sources with international origins include Chi-

nese-made toys with leaded paint, foods imported from

Mexico [10,11], ayurvedic medicines from India [12],

spices [13] and folk medicines [14,15]. These episodes

remind us that it is important to be aware of cultural

practices in assessing a child’s risk of lead exposure.

Based on new information developed since the CDC last

reduced the screening guideline, some have recom-

mended that the screening guideline be reduced to a

level as low as 2 mg/dl [16�]. At this time, the CDC does

not plan to reconsider the guideline, however, because of

the absence of ‘. . . effective clinical interventions . . . to

lower the blood lead levels for children with levels below

10 mg/dl or to reduce the risk for adverse developmental

effects’, because ‘children cannot be accurately classified

as having blood lead levels above or below a value less

than 10 mg/dl . . .’ and because of the lack of evidence of a

‘. . .threshold below which adverse effects are not experi-

enced. . .,’ meaning that ‘any decision to establish a new

level of concern would be arbitrary and provide uncertain

benefits’ (www.cdc.gov/nceh/lead/faq/changebll.htm).

To many, these arguments are not persuasive.
How low is ‘low enough’? Characteristics of
the dose–effect relationship
Meta-analyses of the epidemiological studies available in

the 1990s indicated that children’s intelligence quotient

(IQ) scores decline 2–3 points per 10 mg/dl increase in

blood lead level [17,18]. This estimate of the slope of the

dose–effect relationship was derived on the basis of

studies in which most children had blood lead levels in

the range of 10–30 mg/dl, using regression models in

which the relationship was assumed to be linear (i.e. that

the IQ decline per microgram per deciliter increase in

blood lead level is constant).

Recent studies demonstrate that 10 mg/dl has no special

biological significance with regard to neurodevelopment,

suggesting that the current screening guideline is

best interpreted as a risk management tool. Significant

inverse associations have been reported in study cohorts

in which most or all children had a blood lead level below

10 mg/dl [19–21] and in some cohorts with a mean as

low as 1–2 mg/dl [22,23]. Although one might question

how levels so ‘low’ can pose risk, it is important to

recognize that the descriptor ‘low’ is both an artifact

of the units conventionally used to express blood lead

level and specific to historical epoch. Different

approaches to estimating the natural ‘background’ level

of blood lead in humans converge on the conclusion that

it was two orders of magnitude lower than 1–2 mg/dl [24].

Today’s ‘average’ is not synonymous with ‘physiologi-

cally normal.’
Not only do many studies support the existence of

adverse effects below 10 mg/dl, but the rate of decline

in IQ scores might be greater at blood lead levels below

10 mg/dl than it is at levels above 10 mg/dl [25–30]. In a

pooled analysis of seven major prospective studies invol-

ving 1333 children [26], a log-linear model, the functional

form that best described the relationship, predicted a

9.2-point decline in IQ over the range of less than

1–30 mg/dl. Two-thirds of this decline (6.2 points) was

predicted to occur in the range of less than 1–9.9 mg/dl,

with an additional 1.9-point decline between 10 and

19.9 mg/dl, and a 1.1-point decline between 20 and

30 mg/dl. The mechanism that would generate such a

supralinear relationship is unknown, but presumably

involves a lead-sensitive pathway that is rapidly saturated

at blood lead levels below 10 mg/dl and other, less rapidly

saturated pathways at blood lead levels above 10 mg/dl.

Additional research is needed to rule out alternative

explanations involving methodological artifacts such

as residual confounding. Nonlinear relationships are,

however, common in toxicology [31] and have been

observed in a neurodevelopmental study of methyl-

mercury exposure [32].

No single neurodevelopmental finding unequivocally

identifies a child as having an elevated blood lead level,

nor does there appear to be a group of findings that, in

aggregate, define a ‘signature’ injury. Lead-associated

deficits have been reported in most domains of function,

including verbal IQ, performance IQ, academic skills

such as reading and mathematics, visual/spatial skills,

problem-solving skills, executive functions, fine and gross

motor skills, and memory and language skills. If different

mechanisms are operative within different blood lead

ranges, the neurodevelopmental effects expressed within

a study cohort would be expected to depend, in part, on

the portion of the blood lead range represented in the

cohort. Furthermore, it is likely that the form in which

neurodevelopmental toxicity is expressed depends on

factors such as age at exposure, coexposures to other

neurotoxicants, nutritional status, genotype and the

characteristics of the home environment [33,34]. Exper-

imental studies in rodents show that being reared in a

stimulating environment can reduce the severity of

lead-associated deficits [35]. Enrichment also normalized

gene expression of the N-methyl-D-aspartate receptor in

the hippocampus. On the other hand, being reared in a

stressful environment can exacerbate lead-associated

deficits [36]. Epidemiological studies suggest that the

characteristics of the rearing environment might also affect

the outcomes of lead-exposed children [37]. The failure to

take account of factors that affect the severity and form in

which lead toxicity is expressed could explain the large

interindividual variability in outcome usually observed at a

given lead level [38].
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Recent data have challenged the view that children are at

greatest risk with respect to lead toxicity in the first

few postnatal years. In some studies of school-age IQ,

concurrent blood level, not levels measured in early child-

hood, bore the strongest association with scores [26]. As

lead is a bioaccumulative toxicant with complex kinetics,

however, concurrent blood lead level at school age is

likely to be a reasonable proxy for lifetime exposure,

complicating an effort to draw inferences from obser-

vational epidemiological studies about age-dependent

variation in vulnerability.
Early lead exposure and children’s academic
success
Recent studies have assessed the import of blood lead

levels below 10 mg/dl on children’s success in meeting the

challenges they meet in natural settings such as school. In

a cross-sectional study of 400 6–10-year-olds, children

with blood lead levels of 5–10 mg/dl scored 5.9–8.7 points

lower than children with levels of 1–2 mg/dl on academic

skills such as word reading, reading comprehension,

listening comprehension, math reasoning and math cal-

culations [21]. These associations remained significant

when adjustment was made for children’s IQ scores

(which were also inversely associated with blood lead

level), suggesting the presence of the aptitude/ability

discrepancies often used to identify children with specific

learning disabilities. Similarly, in a study of Taiwanese

8–12-year-olds with a mean blood lead level of

5.5 mg/dl, significant inverse associations were found on

class ranking in Chinese, history and society, mathemat-

ics, and natural science [39]. In Mexican first-graders, a

supralinear relationship was observed between blood

lead level and math achievement score, with the steepest

decline evident among children with levels below

10 mg/dl [27]. Among 8600 fourth-grade students in North

Carolina, inverse associations were found between

blood lead levels as low as 2 mg/dl, measured between

0 and 5 years of age, and end-of-grade reading and

mathematics achievement scores [40]. Studies using

geo-statistical methods have shown that the spatial

distribution of learning disabilities coincides with the

historical presence of major sources of lead exposure [41].
Early lead exposure and neuropsychiatric
outcomes
Although Byers and Lord’s [42] early case series ident-

ified severe behavior problems as prominent sequelae of

lead poisoning, epidemiological studies have only

recently begun to focus in detail on psychopathological

outcomes. Greater lead burden has consistently been

shown to increase the risk of behaviors linked to the

inattentive subtype of attention deficit hyperactivity

disorder (ADHD), such as distractibility, disorganization
and daydreaming [43]. In NHANES (1999–2002), the

risk of parent-reported diagnosis of ADHD increased, in a

dose-dependent manner, with blood lead level [44��].

The adjusted odds ratio in the highest quintile of blood

lead level (above 2.0 mg/dl) was 4.1. Higher prenatal

exposure to lead, inferred on the basis of level of amino

levulinic acid dehydratase in second-trimester maternal

serum, has been associated with an increased risk

of schizophrenia [45]. Experimental studies provide a

plausible basis for this. In rhesus monkeys, lead decreases

social play and increases self-stimulatory behavior, result-

ing in abnormal peer relationships [46].

Aggression and explosive temper were among the

behavioral problems Byers and Lord [42] identified in

lead-poisoned children. Recent studies suggest that early

low-level lead exposure produces antisocial behavior.

These include ecologic studies of area statistics on lead

poisoning prevalence and crime rates [47–49], case–

control studies of adjudicated delinquents [50], and pro-

spective cohort studies of community-dwelling children

and adolescents [51,52]. Although this issue is controver-

sial [53], the link is supported by an experimental study in

which lead exposure reduced the threshold current in the

lateral hypothalamus required to elicit predatory attack

behavior in cats [54].
Mechanisms of lead neurotoxicity
Progress continues to be made in clarifying the changes

in brain development and function that underlie lead’s

neurodevelopmental effects. Lead has been implicated

in diverse processes such as mitochondrial dysfunction,

oxidative stress, deregulation of protein turnover, brain

inflammation, decreased cellular energy metabolism,

lipid peroxidation, altered activity of first and second

messenger systems, abnormal neurotrophic factor

expression, and altered regulation of gene transcription

[55,56].

In rats, early exposure to environmentally relevant lead

levels affects hippocampal granule cell neurogenesis

and morphology [57], as well as experience-dependent

processes by which the barrel field somatosensory cortex

is organized into columnar units [58,59]. Childhood lead

exposure might be a risk factor for neurologic disorders in

adulthood. In rats and primates, developmental exposure

induces late overexpression of amyloid precursor protein

and aggregated b-amyloid peptides, which increase risk

of neurodegeneration [60]. Higher brain lead levels have

been found in patients with diffuse neurofibrillary tangles

with calcification [61]. In adults, the ApoE4 allele, which

is associated with increased risk of Alzheimer’s disease,

increases susceptibility to lead neurotoxicity [62],

although this does not appear to be the case in children

[63].
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Some recent studies have employed functional imaging

methods. Magnetic resonance spectroscopy (MRS) has

revealed reductions in the N-acetylaspartate-to-creatine

and phosphocreatine ratios in the frontal gray matter of

lead-exposed children, consistent with increased

neuronal loss [64]. An MRS study in adults showed an

association between greater cumulative lead exposure

and higher myoinositol-to-creatine ratios in the hippo-

campus, reflecting glial dysfunction [65]. On a verb

generation task, young adults with greater lead exposure

in early childhood had less activation in the left frontal

cortex and left middle temporal gyrus, and increased

activation, perhaps compensatory, in homologous regions

of the right hemisphere [66�].
Efficacy of chelation therapy and other
interventions in preventing lead neurotoxicity
The results of prospective studies provide little evidence

that neurodevelopmental deficits associated with early

lead exposure resolve over time [67–70]. In the only

randomized trial of chelation therapy, conducted on

children with baseline blood lead levels between 20 and

44 mg/dl, succimer was ineffective in preventing or rever-

sing cognitive deficits [71,72], although benefits were

observed on neuromotor outcomes such as postural sway

and balance [73]. Experimental studies in rodents suggest

that certain succimer chelation protocols might improve

learning, attention and arousal regulation [74,75]. Overall,

however, the human data available on chelation efficacy

suggest that primary prevention of exposure is the best

strategy for limiting lead-associated neurodevelopmental

morbidity. Moreover, several children have died from

hypocalcemia following intravenous chelation with

Na2EDTA rather than the recommended CaEDTA

[76], illustrating the importance of the CDC’s recommen-

dation that a primary care provider should not undertake

chelation without consulting with those experienced in

this therapy [77].

No data are available regarding nonmedical interventions

that prevent or remediate lead-associated neurodevelop-

mental deficits. If the nature and severity of lead-

associated deficits vary with a child’s specific character-

istics and circumstances, a ‘one size fits all’ intervention

will not be appropriate, suggesting that interventions

should be selected to address a child’s specific presenting

neurodevelopmental problems, as is done for children with

idiopathic learning difficulties.
Conclusion
We have not yet reached the point where it is possible to

cite a blood lead level that is ‘safe.’ Even worse, evidence

supporting a supralinear dose–effect relationship is
accumulating, suggesting that, despite the remarkable

decline in population lead exposures in recent decades,

substantial work remains to be done before lead-associ-

ated neurodevelopmental morbidity is eliminated.

Although cognitive outcomes such as IQ have historically

been the focus of most studies, higher lead exposures are

being linked to psychosocial disorders such ADHD and

aggression/delinquency. As chelation therapy, at least as

presently used, does not appear to prevent or reverse

neurodevelopmental deficits, primary prevention of

exposure is the best strategy for reducing lead-related

morbidity. The efficacy of nonmedical interventions,

such as environmental enrichment, has been demon-

strated in lead-exposed animals, but the efficacy of such

therapies for lead-exposed children is uncertain.

The Advisory Committee on Childhood Lead Poisoning

Prevention [78��] recently issued the following recom-

mendations for primary care providers:
(1) P
rovide anticipatory guidance to parents of all young

children regarding sources of lead and help them

identify sources of lead in their child’s environment.
(2) H
elp parents to understand the uncertainty of a blood

lead value and potential reasons for its fluctuation,

including error introduced by the sampling methods

and laboratory, age and season-related exposures.
(3) A
ssess all children for developmental and behavior

status, and seek further evaluation and therapy to

reduce developmental or behavioral problems, as

necessary.
(4) D
iscuss with parents the potential impact of lead on

child development and promote strategies that foster

optimum development, including encouraging

parents to influence their child’s development

positively by providing nurturing and enriching

experiences.
(5) W
henever possible, utilize laboratories that can

achieve routine performance of �2 mg/dl for blood

lead analysis.
(6) R
eview office procedures and policies to ensure that

lead exposure risk assessment or blood lead screening

is performed on all children as required by state or

local health officials or as recommended by the CDC.
(7) P
erform a diagnostic blood lead test on all children

suspected of having lead exposure or an elevated

blood lead level and institute the recommended

management guidelines if a child’s blood lead level

increases to above 10 mg/dl.
(8) B
ecome informed about lead exposure prevention

strategies of local or state health departments, and

partner with public health agencies, community

groups and parents to work toward establishing lead-

safe environments in homes and schools for all children

and the reduction of exposure to lead from all sources.
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