Effects of stocking-up freshwater food webs

Lisa A. Eby¹, W. John Roach², Larry B. Crowder³ and Jack A. Stanford⁴

¹Department of Conservation and Ecosystem Sciences, The University of Montana, Missoula, MT 59812, USA
²School of Life Science, Arizona State University, Tempe, AZ 85287-4501, USA
³Duke Center for Marine Conservation, Nicholas School of the Environment and Earth Sciences, 135 Duke Marine Lab Rd, Beaufort, NC 28516-9721, USA
⁴Flathead Lake Biological Station and Division of Biological Sciences, The University of Montana, 311 Bio Station Lane, Polson, MT 59860, USA

The establishment of exotic game fishes to enhance recreational fisheries through authorized and unauthorized stocking into freshwater systems is a global phenomenon. Stocked fishes are often top predators that either replace native top predators or increase the species richness of top predators. Many direct effects of stocking have been documented, but the ecosystem consequences are seldom quantified. New studies increasingly document how species and community shifts influence ecosystem processes. We discuss here how predator stocking might increase top-down effects, alter nutrient cycles and decrease links between aquatic and surrounding terrestrial ecosystems. As fisheries management moves beyond species-specific utilitarian objectives to incorporate ecosystem and conservation goals, ecologists must address how common management practices alter food-web structure and subsequent ecosystem-level effects.

Stocking of predatory, recreational fishes

Widespread and long-term fish stocking of lakes and streams, and the subsequent invasion of nearby aquatic systems, has shifted species assemblages and food-web structure in freshwater systems globally. Many fish introductions into freshwater systems were intended to create recreational fisheries, whereas only a few targeted the conservation of threatened species [1]. Largemouth bass Micropterus salmoides, smallmouth bass Micropterus dolomieu, rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, brook trout Salvelinus fontinalis, northern pike Esox lucius, walleye Stizostedion vitreum and striped bass Morone saxatilis have been stocked in lakes throughout North America [1,2] and European countries [3,4], resulting in more homogenous fish fauna with either increased species richness of top predators or introduced predators replacing native species. Additionally, fisheries management often involves annual fish stocking, potentially maintaining higher predator populations than would occur naturally [5]. Much of the motivation for stocking is economic because abundant game species are highly sought after by sport anglers who support lucrative tourism operations.

Stocking can cause the loss of genetic variation within species, as well as changes in populations and community structure [6,7]. Few studies have quantified the impacts of stocking on food-web or ecosystem function, but those that do often find pervasive and strong effects [8,9]. For example, cascading effects of supplementing top predators are frequent enough that predator stocking has been incorporated into management strategies for controlling primary producers in Europe and China [8,10]. Currently, fisheries practices are being reevaluated (e.g. stocking trout in high alpine lakes [11]) and management goals are being broadened to include non-game objectives, such as the maintenance of biodiversity and ecosystem function [12]. A better understanding of how management practices influence food-web and ecosystem processes is needed to achieve these goals.

Here, we review how stocking fish predators alters food-web and ecosystem processes and we evaluate the wider implications of intentional and unintentional stocking based on case studies and current theory. We conclude with suggestions for future research directed at gaps in our ecological understanding that would help set goals and expectations for future management.

Common outcomes of stocking fish predators

The establishment of exotic predators typically leads to one of two outcomes: replacement of native predators or an increase in predator species richness. Exotic fishes often replace native invertebrate and fish predators through predation and competition. In western North America, exotic lake trout Salvelinus namaycush and brook trout are displacing native bull trout Salvelinus confluentus [13,14]. In Australian and New Zealand streams, introduced brown trout and rainbow trout often reduce or eliminate native galaxiid fishes [6] (Box 1). Nile perch Lates niloticus introduced into African lakes have replaced most piscivorous fishes, including haplochilus species (Cichilidae) and catfish Bagnis spp. [15]. Stocking trout into small, high-altitude, historically fishless lakes throughout Europe and western North America has eliminated large invertebrate predators and amphibian species, and produced subsequent effects that have altered food-web structure and nutrient cycling [16] (Box 2).

When exotic predators do not replace native predator(s) in an ecosystem, they increase the number of top predators.
For example, northern pike, rock bass and largemouth bass have been stocked in many North American lakes and have increased species richness. Whether bass displace native species depends upon several factors, including the ecology of the native top predator and the food web of the receiving water body [17]. In addition, recreational fisheries are often stocked with multiple predatory fish species. For example, multiple salmonid species have been introduced into the Great Lakes and five have established populations [18](Box 3). Thus, heavily stocked freshwater ecosystems might have higher top predator species richness than those that are similar but unstocked.

Food-web consequences of introduced fish predators

Numerous case studies demonstrate food-web consequences of stocking. Effects include increased top-down control (see Glossary), altered food-web structure, modified food-web linkages, as well as both increased and decreased coupling of habitats and ecosystems.

Increased top-down control

Case studies (e.g. [19,20]) and trophic models (e.g. [21]) of predator introductions vary in outcome, predicting top-down, bottom-up, and/or co-limitation by consumers and resources. However, multiple studies demonstrate increased top-down effects, manifested as shifts in prey species richness, composition (shifting dominance) and/or abundances. Effects of these shifts in prey can cascade to primary producers, although whether effects result in an increase or decrease in algal biomass depends on the number of trophic levels. The addition of planktivorous fishes to the top of the food web often reduces competitively...
Box 2. Effects of stocking game fishes into fishless alpine lakes

Stocking of fishes into fishless aquatic systems has occurred throughout western North America for decades [59]. As a result, fishes have been stocked into at least 60% of western mountain lakes [58] and 20% of Canadian Rocky Mountain lakes [60], many of which were historically fishless. Trout introductions typically shift community composition and often result in the loss of native species, particularly amphibians, benthic macroinvertebrates and large zooplankton (Figure I) [61]. By consuming large zooplankton species that naturally dominate zooplankton assemblages without fish predators, trout enable smaller zooplankton to increase in abundance, potentially increasing overall zooplankton species richness by enabling smaller zooplankton to coexist with competitively dominant larger species [22]. Because many herbivorous zooplankton are gape limited, suppression of large zooplankton in lakes can stimulate phytoplankton by reducing grazing pressure [62], although such trophic cascades do not always result [63]. Thus, trout can stimulate pelagic primary production by increasing nutrient availability. By feeding on benthic invertebrates and excreting waste in the pelagic zone, trout transfer nutrients, particularly phosphorus, that were trapped in the sediment to the water column (Figure I) [48].

The effects of fish stocking can also alter the flux of energy and nutrients beyond the lake margin. For example, in many Sierra Nevada lakes, introduced trout have dramatically reduced mountain yellow-legged frog *Rana muscosa* populations, which, in turn, have led to declines in mountain garter snakes *Thamnophis elegans elegans* that prey predominately on amphibians [64].

![Figure I](https://example.com/figure1.png)

Figure I. Effects of stocking trout on food webs of Sierra Nevada lakes. Stocking fishes into fishless lakes results in a series of effects that cascade through the food web. Blue lines denote direct consumption or, in the case of phosphorus, uptake and excretion. White and black lines indicate the positive and negative indirect effects of trout, respectively. Arrow thickness provides a coarse indication of the relative strength of the interaction.
salmonid species reduced exotic planktivorous alewife populations, increased the size structure of zooplankton populations and subsequently increased water clarity apparently as a result of increased phytoplankton grazing [9] (Box 3). These gains and losses have substantially altered the structure of the fish community, leading to changes in the food web and community structure of the lakes. Specifically, the planktivorous:piscivorous fish ratio has decreased in each lake (Figure I). For example, food webs in Lake Michigan had ~16 planktivorous versus two piscivorous species (ratio of eight) during the early 1930s. The ratio is currently 1.3 [18]. As the species richness of piscivore per planktivore increased, the diversity in the diets of the top predators decreased (Figure I). During the 1930s, lake trout were consuming approximately eight different types of prey in Lake Michigan [66] whereas top predators currently have an average of three prey species in their stomachs, predominately alewife [66]. In Lake Ontario, the planktivorous fish community is dominated by alewife, declines in the numbers of which led to growth declines of top predators as there were no available prey species to compensate for the reduction in alewife numbers [67]. Whether this loss of functional redundancy in the food web is impacting ecosystem processes is currently unknown.

Food-web effects

Increase in top-down control of the Great Lakes ecosystem is associated with the stocking of salmonids; the subsequent decrease in the alewife population changed the size structure of the zooplankton population, impacting water clarity [9]. Original predators found in these lakes (burbot Lota lota and lake trout) were part of deep-water food webs, whereas stocked Pacific salmon are primarily found in the shallower waters. Thus, this new food-web structure shuttles carbon through a pelagic pathway but with a loss of avenues through the deep-water community. This results in a loss of carbon making its way into the deep-water benthic community [68].

Although trophic cascades have been observed frequently in lake ecosystems [25], their prevalence has been debated [26,29]. For example, evidence for top-down control is equivocal in streams, as the response of benthic communities to the presence of fishes varies from one experimental study to the next. Although effects of fish predation on stream invertebrates are often purported to be weak [30], stream invasions by brown trout in New Zealand have resulted in strong trophic cascades [31] (Box 1). Even though nutrient state and ecosystem size (i.e. lake depth) can influence whether stocking of top predators alters phytoplankton species composition [32] and where productivity gets expressed, trophic cascades are not completely restricted by ecosystem type, diversity, habitat complexity or assemblage [26].

Altered food-web structure

Introduced predators can alter food-web structure: if introduced predators replace multiple species at the same trophic level or decrease the diversity of lower trophic
levels, simplification of the food-web structure results. For example, Nile perch in African lakes have simplified the food web by replacing hundreds of native consumers [15]. By contrast, predators might shift which trophic level contains the greatest diversity of species. In the Great Lakes, stocking and invasions have substantially changed the offshore cool-water food-web structure, reducing both the planktivorous: piscivorous fish ratio and the species richness of piscivorous fish diets (Box 3). Although implications of these changes for aquatic communities are not yet known, previous studies have demonstrated that ecosystems with less functional redundancy are most vulnerable to disruption of food-web structure and ecosystem function [33].

Changes in habitat coupling
With species replacements and increases in species richness, changes are often seen to food-web linkages and, subsequently, to habitat coupling. For example, stocking fishes into historically fishless lakes often decreases amphibian richness and abundance [34,35], while the loss of metamorphs emerging from aquatic sites severs links between lakes and surrounding terrestrial habitats (Box 2). Similarly, stocking artic char Salvelinus alpinus into streams can reduce the emergence of benthic insects eaten by spiders and birds in the riparian zone [36,37], potentially decreasing the flux of carbon from aquatic to surrounding terrestrial ecosystems [38]. Additionally, a reduced flux of aquatic invertebrates can indirectly affect riparian communities by reducing the pollination of terrestial plants [39].

In Yellowstone Lake, WY, introduced lake trout consume Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, the native top predator of the system. Although ultimate effects of this introduction remain uncertain, lake trout have increased the number of trophic levels within the food web while reducing the abundance of cutthroat trout. Furthermore, lake trout and cutthroat trout also compete with each other, but they are not functionally equivalent. Lake trout remain within lakes for their entire life and occupy greater depths compared with cutthroat, which tend to spawn in tributaries and forage in shallower depths [40]. Consequently, lake trout are inaccessible to many consumers that routinely feed on native cutthroat, such as grizzly bears Ursus arctos horribilis and bald eagles Haliaeetus leucocephalus. Therefore, lake trout decrease or completely terminate the movement of as a nutrient vector between streams and lakes.

By contrast, when stocking increases predator species richness rather than replacing native species, it often results in novel food-web linkages and higher food-web complexity. Exotic species might use previously underutilized prey resources or force native species to rely on alternative prey. In small Canadian lakes where stocking has increased piscivore species richness, native predators experience shifting diets, habitats and/or trophic position. For example, lakes with native lake trout have been stocked with largemouth bass, rock bass and northern pike, causing a decrease in littoral prey fish diversity and abundance. Increased predation pressure in the littoral zone has forced lake trout to occupy the pelagia, with concomitant decreases in their trophic position [17]. Thus, stocking fish predators can increase or decrease habitat coupling.

Increased total consumption by top predators
High stocking rates of predatory sports fishes have often resulted in an elevated abundance of top predators, leading to a potential imbalance between predator consumption and prey abundance [41]. This imbalance is likely to be greatest in less-productive reservoir systems [5], but has probably occurred in many freshwater ecosystems that receive high levels of regular stocking. Because measuring long-term trends in absolute abundance is difficult, deciphering whether stocking increases total predator demand or whether community compensation occurs is rarely evaluated quantitatively. The addition or removal of predators can induce changes in community composition or diet shifts that ensure the overall constant predation pressure on shared food resources is largely unaffected [42]. Whereas the functional responses of predators can reduce predation pressure, piscivorous fishes that feed on aggregated prey are often insensitive to changes in their prey base until prey reach very low densities [43].

Ultimately, whether survival rates of stocked and wild fishes compensate to maintain relatively stable predator abundances will depend on species characteristics, such as diet overlap of stocked and native species, ontogenetic diet shifts, life history and potential for use of alternative prey, as well as system characteristics, such as habitat heterogeneity and prey diversity of the receiving system. Ontogenetic diet shifts might enable more fishes to reach large sizes than the prey base can support. For example, young fishes feeding on zooplankton might have high survival rates, leading to high predation pressure of adult fishes feeding on macroinvertebrates and/or foraging fishes. In addition, alternative prey, such as large invertebrates, might maintain predator populations during periods of low prey fish abundances, maintaining higher predation levels [44]. Finally, stocking itself might help prop up a ‘top-heavy’ food web because many fishes are cannibalistic. Although these mechanisms could increase total predation pressure, how commonly this occurs has yet to be determined.

Ecosystem consequences of stocking top predators
Few case studies investigate the ecosystem effects of stocking top predators. Nevertheless, aquatic ecological theory and available case studies predict changes in trophic efficiency and to ecosystem resilience, and alterations to biogeochemical cycles.

Changes in trophic efficiency
Food-web structure can dramatically alter trophic efficiency. The efficiency of the first link of the food web (e.g. phytoplankton to consumer) is highly variable with energy transfer rates influenced by the quantity and quality of available food and the nutritional requirements of the grazer (e.g. [45]). A food quality index based on phytoplankton species composition and seston carbon:phosphorus ratios was a good predictor of the
production efficiency of *Daphnia rosea* [46]. In addition to stoichiometric considerations, changes to zooplankton size-structure and turnover rates can alter trophic efficiency between phytoplankton and their consumers. For example, decreases in zooplankton size structure produced by fish predation can release small-bodied phytoplankton, which have higher mass specific production rates. Furthermore, because small zooplankton are relatively inefficient grazers, a smaller proportion of primary production enters the food web when fishes exclude larger zooplankton. Therefore, food-web changes that decrease zooplankton size structure might be decreasing trophic efficiency [47].

Changes to biogeochemical cycling within aquatic systems

The addition of fish predators and the subsequent loss of planktivorous fish biomass can decrease total excretion by fishes. For example, in a planktivore-dominated lake, 90% of the recycled phosphorus was from fish excretion, whereas in the lake with piscivorous fishes it was only 20% [27]. Conversely, addition of fishes to fishless lakes can increase nutrient recycling rates. For example, increases in phosphorus regeneration rates resulting from the introduction of fishes into Sierra Nevada mountain lakes were approximately equal to the rate that phosphorus was supplied by atmospheric deposition, substantially increasing the phosphorus available to primary producers [48]. Additionally, shifts in zooplankton community composition (e.g. from cladocerans to copepods) resulting from fish introductions can alter residence times of carbon, phosphorus and nitrogen in the water column, producing shifts in the nutrient limitation [49].

Changes in phytoplankton biomass can alter phosphorus recycling and nutrient retention within lake systems. When phytoplankton biomass is low, sedimentation and decomposition rates might be reduced, resulting in high redox potential and low rates of phosphorus release from the sediment [28]. Furthermore, changes in the abundance and distribution of primary producers shift rates and locations of nitrogen retention in streams (Box 1). Thus, the introduction of top predators to streams can influence the location and rate at which nutrients cycle through ecosystems.

Many fishes are highly mobile animals that often feed in one habitat and excrete their wastes in another. For example, fishes that forage in the littoral zone can transfer nutrients to the pelagic zone [50]. The degree to which fishes transfer nutrients from one habitat to another is strongly influenced by fish species composition [50]. Stocking of fish predators can change lower trophic level species composition and behavior (or habitat use), decreasing this coupling. Specifically, introduced piscivorous fishes can limit planktivorous fishes to the littoral zone and subsequently decrease pelagic-littoral coupling. Similarly, by reducing benthic invertebrate abundances and amphibians, introduced trout can reduce the flux of energy and nutrients to surrounding terrestrial systems. Consequences of habitat decoupling, although poorly understood, are probably important, particularly if fishes transfer nutrients from previously inaccessible benthic or terrestrial sources [27], change organic carbon transfer to the benthic community, or decrease transport of energy from aquatic to terrestrial food webs.

Change to global biogeochemical cycles

Repercussions of predation-driven shifts in primary production and nutrient cycling can extend beyond the lake. In addition to disrupting the flux of nutrients from aquatic ecosystems to adjacent terrestrial ecosystems, introduced fish predators can alter the exchange of carbon dioxide between lakes and the atmosphere [51]. Whether a lake acts as a net source or sink of atmospheric carbon depends upon the balance between organic carbon burial and carbon dioxide evasion [52]. Lake carbon dynamics are affected by relative rates of gross primary production, carbon flux from terrestrial ecosystems and ecosystem respiration [51]. Food-web manipulations in a series of Wisconsin lakes demonstrated that primary production varies strongly with nutrient loading and trophic structure. In piscivore-dominated lakes, planktivorous fishes were eliminated and large-bodied zooplankton limited phytoplankton production and respiration. Food webs in these small lakes were fueled primarily by terrestrial carbon inputs, respiration exceeded organic carbon burial and the lake served as a source of carbon dioxide to the atmosphere. However, when piscivorous fishes were absent and planktivorous fishes dominated, large-bodied zooplankton were eliminated and primary production was no longer grazer limited. Such planktivore-dominated lakes were capable of depleting dissolved carbon dioxide in the water column and acted as net sinks for carbon dioxide [51]. Although introduced top predators can alter fundamental biogeochemical processes driving atmospheric carbon exchange in temperate lakes, the generality of this result and its impact on broader biochemical cycles remains unknown.

Changes to ecosystem resilience

Resilience has been defined as the capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity and feedbacks [53]. Ecologists have argued that invasive species that alter food-web dynamics and ecosystem processes might be eroding the resilience of ecosystems [54]. Nutrient turnover time is often directly correlated with return time from a pulse nutrient addition [55], so any changes to food webs that alter nutrient turnover time probably also alter ecosystem resilience. Theoretical models predict changes to resistance and resilience associated with food-web simplification in structure and linkages, but these vary in their applicability to natural systems. Functional redundancy has been demonstrated to be a key factor in resiliency to acid stress for Canadian lakes [33]. Overall, we have little to no understanding of whether or how these food-web alterations influence the response and resilience of the ecosystem to common disturbances.

Conclusions

In comparisons of freshwater systems (increasing top predators) with marine systems (decreasing top predators), we see many of the same ecosystem components shifting...
Box 4. Freshwater and marine comparisons

Fishing has removed many large predatory fishes from the oceans [69], posing potentially serious problems [70,71]. Predator loss and fishing on lower trophic levels has produced an estimated 50% decrease in mean trophic level of landings [72]. How pervasive these trends are is equivocal [73], but fishing pressure is changing the overall structure of marine food webs in several regions. As with freshwater systems, whether top-down forces are strong enough to have subsequent food-web and ecosystem effects remains a crucial question in marine systems [74]. If they do, there are several interesting questions addressing the differences and similarities of freshwater and marine ecosystems.

- Do similar trophic cascades occur in marine ecosystems? The collapse of cod stocks in the North Atlantic produced effects that cascaded down to zooplankton and phytoplankton [75]. However, information about the effects associated with the loss of top marine predators is rare. Are changes in the densities and size structure of prey populations common? Does where and how productivity gets expressed shift? Are nutrient cycles altered?
- Are effects of removing trophic levels from marine systems more likely to be irreversible than the effects of stocking freshwater fish predators? Unlike freshwater systems that have demonstrated recovery with predator removal, there are common examples of persistence of an alternate state in both the North Atlantic and Caribbean coral reefs [74].
- What are the potential ecosystem impacts of these changes? Experimental evidence indicates grazers can buffer moderate increases in nutrient loading in coastal systems. Thus, if trophic cascades do shift species composition, we could expect ecosystem changes in carbon storage, nitrogen retention and in where productivity is expressed [76].
- Are marine food webs more connected than freshwater systems and, therefore, more robust? Recent studies have found that robustness can increase with food-web connectance [77]. Given that diverse estuarine and marine food webs are best described as food webs with many weak links, we might expect these species complexes to exhibit compensatory responses and to better maintain ecosystem functions.
- What can the introduction of fish predators to freshwater systems tell us about potential impacts of removing predators from marine ecosystems?
- How does widespread stocking of anadromous fishes influence marine food-web structure and ecosystem function? Populations of salmonids previously stocked in New Zealand and Patagonia are expanding naturally, while stocking of salmonids in the North Pacific continues at a rate of five billion smolts per year [78]. However, ecosystem-level consequences of this influx of fish predators remain poorly understood.

Box 5. Outstanding questions

Understanding when and where to expect ecosystem consequences of stocking top predators is important for ecosystem management. Some common assumptions (e.g. large and more diverse systems are less likely to be impacted by exotic species) were not regularly supported by the case studies in this review. However, our review raised multiple questions about the effects of stocking on food webs and about how to connect fisheries management to ecosystem processes.

Food-web questions

- Does intense stocking increase predation pressure or is there functional and numerical compensation? Often stocked systems are also heavily exploited by recreational fisheries. Although there are only a few examples of overstocking [5,66], whether stocking increases predation pressure is not well-understood and worth pursuing.
- What is the role of compensation in number of trophic levels? Does stocking fishes at the top trophic level increase the number of trophic levels? Fishes introduced to high mountain lakes [79] replaced existing top predators. However, whether stocking piscivorous fishes commonly results in the replacement of native predators or ultimately increases the number of trophic levels has yet to be determined.
- What is the role of disturbance on whether stocked fishes have large food web and ecosystem effects?
- Are these food web changes irreversible? Although the return of native taxa after the removal of Nile perch [80] and exotic trout [61] suggests that some food-web changes are reversible, eradication of introduced fishes is a rare phenomenon. However, recent trends towards stocking hybrid, sterile fishes might influence whether these management actions are reversible. Furthermore, factors promoting recovery remain poorly understood.

Ecosystem questions

- Are ecosystem effects reversible or is there a point of no return (i.e. positive feedback that results in alternative stable states or in irreversible biogeochemical changes)?
- What systems are more or less vulnerable to ecosystem changes with stocking?
- What are the implications of altered nutrient cycles for nutrient retention and flux of nutrients to ecosystems?
- How are these changes influencing the role that these systems have in the landscape?
- Specifically, are these systems source populations for amphibians, fishes and invertebrates? Is the nutrient pathway from the aquatic to the terrestrial system important to nearby terrestrial communities?
- Do functionally equivalent species matter? Are highly connected communities more robust to changes in food-web structure (additions, as well as deletions)?
- Are changes to biogeochemical cycles large enough to be important beyond the immediate area?

with anthropogenic manipulation. Given their smaller scale and relative isolation, small lakes are easier study sites for examining the cascading effects of food-web manipulations. By comparing across a gradient of systems from small, isolated lakes, with species-poor, simple food webs, to large systems with more complex food webs, we might better understand the ecosystem implications of anthropogenic manipulation and develop robust approaches to documenting complex changes that might be occurring in larger, less tractable marine systems (Box 4).

In many lakes and streams, fish stocking commonly results in food-web changes such as increased top-down control and food-web simplification, but we expect that characteristics that inhibit trophic cascades, such as low productivity of the ecosystem, large ecosystem size, presence of refuges, indirect effects of adaptive foraging, potential for compensation and organism physiology [26,32,56], would buffer some of the ecosystem effects.
References

7 Dunham, J.B. et al. (2004) Assessing the consequences of nonnative trout in headwater ecosystems in Western North America. Fisheries 29, 18–24
39 Koel, T.M. et al. (2005) Nonnative lake trout result in Yellowstone cutthroat trout decline and impacts to bears and anglers. Fisheries 30, 10–19
46 Zaret, T.M. (1980) Predation and Freshwater Communities, Yale University Press

www.sciencedirect.com
64 Matthews, K.R. et al. (2002) Garter snake distributions in high-elevation aquatic ecosystems: is there a link with declining amphibian populations and nonnative trout populations? *J. Herpetol.* 36, 16–22

The ScienceDirect collection

ScienceDirect’s extensive and unique full-text collection covers more than 1900 journals, including titles such as *The Lancet*, *Cell*, *Tetrahedron* and the full suite of *Trends*, *Current Opinion* and *Drug Discovery Today* journals. With ScienceDirect, the research process is enhanced with unsurpassed searching and linking functionality, all on a single, intuitive interface.

The rapid growth of the ScienceDirect collection is a result of the integration of several prestigious publications and the ongoing addition to the Backfiles – heritage collections in a number of disciplines. The latest step in this ambitious project to digitize all of Elsevier’s journals back to volume one, issue one, is the addition of the highly cited *Cell Press* journal collection on ScienceDirect. Also available online for the first time are six *Cell titles’* long-awaited Backfiles, containing more than 12,000 articles that highlight important historic developments in the field of life sciences.

For more information, visit www.sciencedirect.com